03/HSE/ENV/202/04 20.11.2020

The Additional Principal Chief conservator of Forests (C)
Ministry of Environment, Forest & Climate Change
4th Floor, E&F Wings, Kendriya sadan, Koramangala, Bangalore-560 034

Dear Sir,

Sub: Submission of Half yearly compliance report – Environmental Clearance issued by the Ministry of Environment, Forests and Climate Change.

Ref: EC No: J-11011/369/2005-IA II (I) dated 2nd February 2006, granting environmental clearance for Capacity Expansion cum Modernisation Project (Phase-II).

Please find enclosed the compliance report on the various conditions laid down by MoEF &CC, pertaining to the half year period from 1st April 2020 to 30th Sept. 2020 for the Project mentioned in above reference.

Thanking you

Very truly yours

For BPCL Koch Refinery

Ramachandran W.K

General Manager I/C (HSE)

Encl: 1.Six Monthly Compliance Report

- 2. Annexure -I, Emission Details
- 3. Annexure -II, Ambient Air Details
- 4. Annexure III, Quality of Effluent discharged
- 5. Annexure IV, Bore well Analysis Report.
- 6. Annexure V, Noise Surveillance Data.
- 7. Annexure VI, Health Surveillance Data.
- 8. Annexure VII, CREP Compliance

1. The Member Secretary

Central Pollution Control Board

Parivesh Bhawan

East Arjun Nagar

Delhi - 110 032

2. The Member Secretary

Kerala State Pollution Control Board

Plamoodu Junction

Pattom Palace

Thiruvananthapuram - 695 004

पोस्ट बैग नं: 2, अम्बलमुगल - 682 302, एरणाकुलम ज़िला, केरल, दूरभाषः 0484 - 2722061 - 69 फैक्सः 0484 - 2720961 / 2721094 पंजीकृत कार्यालयः भारत भवन, 4 & 6, क्रीमभॉय रोड, बेलार्ड इस्टेट, पी. बी. नं. 688 मुंबई - 400 001

COMPLIANCE STATUS OF ENVIRONMENTAL CLEARANCE CONDITIONS FOR CAPACITY EXPANSION CUM MODERNISATION PROJECT (PHASE-II) ACCORDED BY J-11011/369/2005-IA II(I) DATED 2ND FEBRUARY 2006

Status of the project: Project commissioned in 2010-11

SI No	Conditions	Status as on 30.09.2020
Α.	SPECIFIC CONDITIONS	
1.	The gaseous emissions from various process units shall conform to the standards prescribed by the concerned authorities from time to time. The KSPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the industry and its size and location. At no time, the emissions levels should go beyond the prescribed standards. In the event of failure of any pollution control system adopted by the unit, the respective unit should not be restarted until the control measures are rectified to achieve the desired efficiency.	All emissions within the prescribed standards. No failures of any pollution control system.
2.	On-line continuous monitoring facilities shall be provided on all the stacks of adequate height as per CPCB guidelines. SO ₂ , CO, HC, NOx etc. shall be maintained within the CPCB limits. Low sulphur fuels shall be used for heaters. Sulphur Recovery Unit (SRU) shall be installed and SO ₂ emissions from the plant shall not exceed existing 1607 kg/h and further efforts shall be made to further reduce SO ₂ emissions. Low NOx burners shall be installed to control the NOx emissions.	Online continuous monitoring facilities are provided on all operational stacks. SO2, CO, NOx, PM, H2S and Ni/Vanadium are being monitored as per consent and are within limits BPCL Kochi Refinery is using desulphurised fuel gas and low sulphur fuel oil (Sulphur content less than 1%) in old heaters and less than 0.5% in newly installed heaters boilers. Total SO ₂ emission from the refinery is within the limit of 1518 kg/h. For reducing the sulphur content of fuel gas low sulphur fuel oil is used in heaters, sulphur recovery unit (SRU) of capacity 80 TPD, has been installed as part of CEMP Phase-II project. Heaters and boilers installed as part of CEMP Phase-II project are provided with low NOx burners.

SI No	Conditions	Status as on 30.09.2020
3.	Continuous ambient air quality monitoring stations for SO2, SPM, HC shall be installed in all the 4 directions in consultation with the KSPCB. Data shall be regularly monitored and records maintained and report submitted to the Ministry/CPCB/KSPCB once in six months.	In consultation with KSPCB, the refinery has installed CAAQMS stations in all the four directions. Data on ambient air quality for the period from 1 st April 2020 to 30 th Sept. 2020 is attached as Annexure-II.
4.	As indicated in the EIA/EMP reports, out of total 1700 m³/d industrial effluent generated, 360 m³/d sour water will be recycled in the plant after stripping of Ammonia and Hydrogen Sulphide and will be used for desalting of crude in desalters and as wash water in air fin condensates etc. Besides, 300 kl/d, treated waste water will be used for fire fighting, process area cleaning, cooling water make up and for green belt development. Remaining treated effluent will be discharged to Chitrapuzha river after conforming to the prescribed standards. Generation of waste water shall be reduced by installation of sour water stripper unit; use of closed blow down system for all hydrocarbon liquid discharge from the process units, proper segregation and collection of various effluents; paving the process area to avoid contamination of soil, ground water, comprehensive waste water management etc.	A new Sour water Stripping unit (SWS) of capacity 412.8 m³/d was installed along with the project. The stripped water is recycled in the plant. Stripped water is used in Desalters in crude units Closed blow down (CBD) system is provided in all units. Proper collection /segregation facilities are installed for effluent streams. CEMP-II effluents are treated in ETP and the treated effluents is recycled backs to RO-DM plant. Process areas are paved to avoid contamination of the soil.
5.	No ground water contamination in and around factory premises shall be ensured by making all the underground lines carrying hydrocarbons, closed drainage system, storage tank etc. leak proof in order to avoid any leakages. Regular monitoring of ground water in and around factory premises shall be carried out by installing piezometer wells and six monthly reports shall be submitted to the Regional Office of this Ministry at Bangalore/CPCB/KSPCB.	Around sixty borewells are dug inside the refinery premises and the water sample from the wells are monitored regularly, to assess the ground water quality, 14 nos of Piezometer wells are also provided for the same. Hydrocarbon storage tanks are provided with MS plates at the bottom to avoid leaching of oil to land. Moreover LDPE lining is also provided on the tank pad of new tanks as an additional precaution to prevent oil seepage to underground water. In addition, closed drainage system is provided for all storage tanks, to avoid any possible land/ ground water contamination during tank draining.

SI No	Conditions	Status as on 30.09.2020
6.	The domestic waste water shall be treated in the sewage treatment plant and treated waste water conforming to the standards for land application shall be reused for green belt development.	STP of 250 m3/day capacity has been installed and running continuously for treating the domestic waste water. The treated effluent is being used for green belt development.
7.	Regular monitoring of the quality of effluent discharged and at river water intake point shall be ensured to ensure no pollution of the Chitrapuzha river.	Quality of effluent discharged into the Chitrapuzha river is analysed and monitored on a regular basis to ensure no pollution of the Chitrapuzha river. The river water intake to refinery is located at Periyar river and the quality of the same is also monitored.
8.	In-plant control measures for checking fugitive emissions from spillage/raw materials handling etc. should be provided. Proper maintenance of equipments shall be ensured to reduce fugitive emissions.	Closed Blow Down (CBD) systems are provided in all process plants to enable closed loop recycling of all hydrocarbon drains, without fugitive emissions. Double seal floating roof are provided for all the Crude tanks, Hydro carbon detectors are provided as per requirement. Proper maintenance of equipment (including preventive maintenance) is carried out on a regular basis.
9.	Solid waste generated in the form of oil sludge, chemical sludge, catalyst, spent molecular sieves and bio-sludge shall be properly treated / reprocessed / reused or properly disposed off. Spent catalyst, a hazardous waste shall either be sent back to supplier(s) for reprocessing or disposed off in the secured landfill. Oil sludge shall be subjected to maximum recovery followed by bio-remediation. Bio-sludge for ETP shall be used as manure after ensuring all the parameters within the permissible limits whereas chemical sludge from ETP shall be collected and disposed in Secured Landfill (SLF).	Post IREP, ETP chemical sludge is processed in DCU. Oily sludge to the maximum possible is processed in DCU. BPCL Kochi Refinery has implemented a scheme for recovery of oil from oily sludge, solids after oil recovery is bio remediated/ disposed in TSDF. Spent catalyst is disposed by either returning to the original supplier or selling to the recycler or is disposed in secured land fill. Bio sludge from effluent treatment plant is used as manure.

SI No	Conditions	Status as on 30.09.2020
10.	Green belt of adequate width and density shall be provided to mitigate the effects of fugitive emissions all around the plant. Green belt shall be developed in 116 hectares out of total 461.7 hectares land with local species in consultation with the DFO and as per the CPCB guidelines.	A full-fledged greenbelt is developed and maintained in the refinery premises. At present KR is having green cover to the extent of 33% of the plant area.(243 acre).
11.	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Health surveillance done regularly and records maintained.
12.	As committed in the EIA/EMP report, the company shall earmark Rs.78.30 crores for environment protection measures and Rs.51.00 crores for community development activities.	CREP reported as Annexure-VII
13.	All the other recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Refinery sector shall be implemented. CREP guidelines regarding discharge of treated effluent within 0.4 m³/MT of crude shall be strictly followed.	Complied. The discharge of treated effluent was 0.22 m³/MT of crude for the half year period from 1st April 2020 to 30th Sept. 2020
В.	GENERAL CONDITIONS:	
1.	The project authorities must strictly adhere to the stipulations made by the KSPCB and the State Government.	Complied.
2.	No expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment & Forests.	Complied.

SI No	Conditions	Ctatus
3.	Adequate AAQMS should be established in the downward direction a well as where maximum ground lever concentration of SPM, SO ₂ and NOx are anticipated in consultation with the KSPCB. Data on ambient air quality fugitive emission and stack emissions shall be regularly submitted to this Ministry including its Regional Office a Bangalore once in six months and monthly to KSPCB.	installed five continuous AAQMS stations. Online data are being continuously transferred to CPCB from all AAQMS stations. Data on ambient air quality during the half yearly period from 1st April 2020 to 30th Sept. 2020 is
4.	The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules. 1989 viz 75 dBA (daytime) and 70 dBA (night time).	Noise level data attached as Annexure-7
	The project authorities shall provide adequate funds (both recurring and non-recurring) to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government along with the implementation schedule for all the condition stipulated herein. The funds so provided should not be diverted for any other purposes.	Complied.
t	The Regional Office of this Ministry at Bangalore/CPCB/ KSPCB will monitor he stipulated conditions. A six monthly compliance report and the monitored data along with statistical interpretation should be submitted to them regularly.	Complied.

SI No	Conditions	Status as on 30.09.2020
7.	The company shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the KSPCB / Committee and may also be seen at Website of the MoE&F at http:/envfor.nic.in. This should be advertised within seven days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional Office.	Complied
8.	The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.	The final approval for the implementation of the project was obtained on 27.04.06. The same was informed MoE&F vide letter No. 10/MPT/CEMP-II/04 dated 18 th May, 2006. The project has been commissioned.

		REMA	RKS									6,144			1 10.7	
		PERCENTAGE	MOE&F	100	=	100	100		100	=	=	=	=	=	100	=
		PERCI	SPCB	100	=	100	100		100	=	=	Ξ	=	-	100	=
		ATTER	AVG	56	70	49	53	51	50	48	59	49	50	46	49	28
		PARTICULATE MATTER mg/Nm3	MAX	56	84	51	56	53	53	53	62	51	53	52	61	39
		PART	NIN	56	45	47	50	49	46	40	99	46	47	40	37	20
REFINERY		3/hr	AVG	26527	48397	24107	70376	45497	26931	29582	25995	61550	28082	116338	159748	12988
ON STACK EMISSIONS FROM BPCL KOCHI REFINERY	ept. 2020	EMISSION RATE Nm3/hr	MAX	26527	58735	24224	76817	48324	32455	32824	26076	74469	34685	126427	190414	14379
SIONS FROM	PERIOD - April 2020 to Sept. 2020	EMISSIC	MIN	26527	41376	23991	63936	42670	21242	26941	25914	48630	21480	101083	129083	10958
ACK EMIS	ERIOD - Ap	JOE	AVG	578	426	610	449	689	299	096	752	615	999	146	420	537
DAIAONS	۵	SULPHUR DIOXIDE mg/Nm3	MAX	578	526	613	451	691	722	1021	755	620	672	150	554	618
2		SOL	Ν	578	233	909	447	687	561	799	750	609	661	141	287	411
		PERMITTED EMISSION	Nm3/hr.	45000	102000	25000	150000	136000	70000	35000	27000	130000	35000	150000	277900	23000
		NO. OF SAMPLES	ANALYSED	1	5	2	2	2	3	4	2	2	2	2	2	4
		STACK NO.		KH1B	NH2/HH1	FH1	FH3/COB	UB10	UB9	DSX 002	DDH1	CH21	CH22	UB7	CPP/HRSG	BITUROX
		SL.NO.		1	2	3	4	5	9	7	6	10	11	12	13	14

	REMA	RKS					Jelly		1919							W TEST			SIM				
	PERCENTAGE COMPLIANCE	MOE&F	100	Ξ	=		=	=	=	=	=			100	=	=		100	=	=			
	PERCE	SPCB	100	=	н	н	=	=	=	Ξ	=			100	=	=		100	=	=			
	ATTER	AVG	63	43	42	26	58	40	89	1	1	28	24	35	21	21	<u>.</u> 4	4	23	29	34	14	
	PARTICULATE MATTER mg/Nm3	MAX	29	53	61	69	61	47	71	1	t	46	36	47	34	31	4	4.3	32	29	45	18	
	PARTI	NIN	58	23	22	32	55	31	65	•	1	10	11	21	10	11	4	3.6	15	29	18	6	
KELINEKI	3/hr	AVG	49891	133083	63839	102401	44812	13527	27343	91493	88616	251571	58328	52909	21116	149948	75056	76491	141058	143521	132024	146410	
BFCL ROCH	EMISSION RATE Nm3/hr	MAX	50376	151121	79645	116529	50980	14164	28345	91679	92105	253661	58572	53880	21883	175359	75056	77788	160102	143521	159874	153253	The Proposition of the Party of
PERIOD - April 2020 to Sept. 2020	EMISSIC	MIN	49407	115497	43484	91716	38645	12963	26341	91222	82138	245958	58183	52265	19078	124015	75056	74589	122736	143521	98047	139567	
RIOD - Ap	DE	AVG	552 4	131	512	623	715	962	831	382	401	569	151	396	23	29	23	38	237	313	280	55	
PE	SULPHUR DIOXIDE mg/Nm3	MAX	556	147	604	756	718	1106	835	460	532	762	192	962	30	40	23	42	339	313	368	70	1 10000 000
٥	SULF	MIN	548	92	362	322	711	887	827	317	338	346	90	25	14	18	23	32	120	313	129	40	
	PERMITTED EMISSION	Nm3/hr	51000	427000	158000	118000	72000	22000	70000	92500	92500	254000	29000	55000	22400	235250	80000	80000	1095907	1095907	1095907	306584	
	NO. OF SAMPLES	ANALYSED	2	4	4	5	2	3	2	5	2	4	2	4	4	41	1	3	4	1	5	2	
	STACK NO.	ONI	CH223	GT2 HRSG	UB11	NHT CCR	VHH02	DSX 301	UB 8	SRU III TRAIN A	SRU III TRAIN B	CDU III	DHDT	VGO HDT	PFCCU HEATER	PFCCU REGENERATOR	DCU-1	DCU-2	HRSG-3	HRSG-4	HRSG-5	UB 12	
	SL.NO.		15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	

AMBIENT AIRQUALITY DATA FOR THE HALF YEAR PERIOD April 2020 to Sept. 2020

			MARKET	ING			
PARAMETER	UNIT	April- 20	May- 20	June- 20	July- 20	Aug- 20	Sept- 20
SO2	μg/m3	23	13	14.9	11	9.2	20.6
NOx	μg/m3	14	19.8	32.1	38.1	26.4	15.9
NH3	ug/m3	0.2	5.9	12.1	8.3	2.9	0.8
СО	mg/m3	0.8	0.63	0.60	0.6	0.6	0.8
Benzene	μg/m3	BDL	BDL	BDL	BDL	BDL	BDL
Methane	ppm	BDL	BDL	BDL	BDL	BDL	BDL
NMHC	ppm	BDL	BDL	BDL	BDL	BDL	BDL
PM 10	μg/m3	44	41.7	26.7	24.1	25.5	26.9
PM 2.5	μg/m3	27	20.9	15.7	14.3	13.8	13.5

			COLON	1Y			
PARAMETER	UNIT	April- 20	May- 20	June- 20	July- 20	Aug- 20	Sept- 20
SO2	μg/m3	12	13.1	13.8	11	7.7	5.4
NOx	μg/m3	16	15.6	18	19.5	64.3	32.7
NH3	μg/m3	39	33.4	37.5	19.7	8.8	5.4
СО	mg/m3	0.6	0.73	0.82	0.62	0.53	0.52
Methane	ppm	0.1	0.1	0.07	0	0	0
NMHC	ppm	BDL	BDL	BDL ,	BDL	BDL	BDL
Benzene	μg/m3	BDL	BDL	BDL	BDL	BDL	BDL
PM 10	μg/m3	38	38.3	25.9	23	25	20.9
PM 2.5	μg/m3	24	18.5	11.2	10.8	10.3	9.8

AMBIENT AIRQUALITY DATA FOR THE HALF YEAR PERIOD April 2020 to Sept. 2020

			DHDS				
PARAMETER	UNIT	April- 20	May- 20	June- 20	July- 20	Aug- 20	Sept- 20
SO2	μg/m3	38	48.9	6.5	12.7	10.5	8.7
NOx	μg/m3	26	38.9	45 ,	42	40.6	26.2
NH3	μg/m3	1.0	0.6	1.9	0.6	1.3	0.3
СО	mg/m3	2.2	1.5	0.6	0.6	0.62	0.8
Benzene	μg/m3	BDL	BDL	BDL	BDL	BDL	BDL
Methane	μg/m3	BDL	BDL	BDL	BDL	0.04	1.2
NMHC	μg/m3L	BDL	BDL	BDL	BDL	BDL	BDL
PM 10	μg/m3	38	43.5	32.7	30.2	35.1	25.8
PM 2.5	μg/m3	24	19.5	13.3	12.3	12.8	11.0

			CISF TOWN	N SHIP			
PARAMETER	UNIT	April- 20	May- 20	June- 20	July- 20	Aug- 20	Sept- 20
SO2	μg/m3	1.4	2.8	4.2	6.1	8.3	8.4
NOx	μg/m3	23	13.2	16.8	18.7	17	15
NH3	μg/m3	18	18.8	22.2	22.6	23.4	13.2
СО	mg/m3	0.8	1.1	1.1	1.2	1.3	1.2
Methane	ppm	0.4	0.85	1.2	0.4	0	0
NMHC	ppm	0	0.16	0.1	0.02	0	0
Benzene	μg/m3	0.4	0.15	0.1	0.02	0	0
PM 10	μg/m3	47	45.8	37.6	32.8	38.8	31.2
PM 2.5	μg/m3	26	18.8	14	12.7	14.1	11.7

AMBIENT AIRQUALITY DATA FOR THE HALF YEAR PERIOD April 2020 to Sept. 2020

			NHT CC	R			
PARAMETER	UNIT	April- 20	May- 20	June- 20	July- 20	Aug- 20	Sept- 20
SO2	μg/m3	5.8	5.1	3.2	2.1	1.8	2.8
NOx	μg/m3	8.8	7.5	7.3	7.0	7.0	6.4
NH3	μg/m3	BDL	BDL	BDL	BDL	BDL	BDL
СО	mg/m3	0.93	1.8	0.53	0.33	0.29	1.2
Methane	ppm	BDL	BDL	BDL	BDL	BDL	BDL
NMHC	ppm	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	μg/m3	BDL	BDL	BDL	BDL	BDL	BDL
PM 10	μg/m3	48	68	56	76.4	83.9	51.5
PM 2.5	μg/m3	14	15	15 .	2.5	2.1	2.3

TREATED EFLUENT QUALITY DATA FOR THE HALF YEAR PERIOD April 2020 to Sept. 2020'

Effluent Monitoring Station - Out Let A								
	PARAMETERS							
Month	Oil & Grease mg/l	Phenols mg/l	Sulphides mg/l	TSS mg/l	BOD (3 DAYS @27 C) mg/l	COD mg/l	рН	
	Avg.	Avg.	Avg.	Avg.	A'vg.	Avg.	Avg.	
April-20	<4.0	0.1	0.4	13	11	43	7.3	
May-20	<4.0	0.09	0.4	11	13	57	7.3	
June-20	<4.0	0.1	0.4	11.5	13	75	7.0	
July-20	<4.0	0.1	0.4	12	11	42	6.8	
Aug-20	<4.0	0.09	0.4	12	13.5	58	7.3	
Sept-20	<4.0	0.1	0.4	11	12	42	7.2	
Consented Limit	5	0.35	0.5	20	15	125	6.5-8	

TREATED EFFLUENT QUALITY DATA FOR THE HALF YEAR PERIOD April 2020 to Sept. 2020

	Effluent Monitoring Station-Outlet B					
Parameters	pН	TSS	Oil & Grease	BOD (3 days @ 27 C)		
Unit		ppm	ppm	ppm		
Month	Avg.	Avg.	Avg.	Avg.		
April-20	7.2	<1	<4	8		
May-20	7.3	<1	<4	10		
June-20	7.1	<1	<4	12		
July-20	7.0	<1	<4	12		
Aug-20	7.0	<1	<4	12		
Sept-20	7.1	<1	<4	10		
Consented	6.5-8.0	100	5	30		
Limit						

QUALITY CONTROL DEPARTMENT BPCL-KOCHI REFINERY, AMBALAMUGAL

BOREWELL WATER TEST REPORT

Bore well No. 50
Date of Sample: 22.10.2020
Date of Testing: 22.10.2020

KR.TECH.QC.26.DRINK.WATR

SI No:	Test Parameters	Unit	Method ,	Result	Acceptable limit
5	рН	***************************************	IS 3025 (P:11)	7.2	6.5 - 8.5
15	Oil	mg/t:	IS 3025 (P:39)	nil	nil
	Metals				**************************************
16	Silver (as Ag)	mg/L	IS13428 Annexe J	BDL (MDL=0.005)	0.1 (Max)
17	Aluminium (as Al)	mg/L	IS 3025 (P:55)	BDL(MDL=0.002)	0.03 (Max)
18	Boron (as B)	mg/t.	IS 3025 (P:57)	8DL(MDL=0.01)	0.5 (Max)
19	Barium (as Ba)	mg/L	IS13428 Annexe F	BDL(MDL=0.01)	0.7 (Max)
20	Calcium (as Ca)	mg/L	IS 3025 (P:40)	38	75 (Max)
21	Cadmium (as Cd)	mg/L	IS 3025 (P:41)	BDL(MDL=0.001)	0.003 (Max)
22	Chromium (as Cr)	mg/L	IS 3025 (P:52)	BDL(MDL=0.01)	0.05 (Max)
23	Copper (as Cu)	mg/L	IS 3025 (P:42)	BDL(MDL=0.01)	0.05 (Max)
24	Iron (as Fe)	mg/L	IS 3025 (P:53)	0.11	0.3 (Max) ·
25	Magnesium (as Mg)	mg/L	IS 3025 (P:46)	1.6	30 (Max)
26	Manganese (as Mn)	mg/L	IS 3025 (P:59)	BDL(MDL=0.01)	0.1 (Max)
27	Nickel (as Ni)	mg/L	IS 3025 (P:54)	8DL(MDL=0.01)	0.02 (Max)
28	Molybdenum (as Mo)	mg/L	IS 3025 (P:02)	8DL(MDL=0.002	0.07 (Max)
29	Lead (as Pb)	mg/L	IS 3025 (P:47)	BDL(MDL=0.01)	0.01 (Max)
30	Zinc (as Zn)	mg/L	IS 3025 (P:49)	0.3	5 (Max)
31	Arsenic (as As)	mg/L	IS 3025 (P:37)	8DL(MDt0.005)	0.01 (Max)
32	Mercury (as Hg)	mg/L	IS 3025 (P:48)	BDL(MDL0.0001)	0.001(Max)
33	Selenium (as Se)	mg/L	IS 3025 (P:56)	BDL(MDL=0.001)	0.1 (Max)
34	Antimony (as Sb)	mg/L	APHA:3113B '	8DL(MDL=0.001)	Max0.1

BDL: Below Detection Limit MDL: Minimum Detection Limit

Adalazhagan K Chief Manager (Quality Control)

BHARAT PETROLEUM CORPORATION LIMITED KOCHI REFINERY

HSE DEPARTMENT

KR.HSE.SAFE.05.SLMR.SKP

07.10.2020

Sub: Noise level at Boundary Wall.

Noise level at various locations near the boundary wall inside the refinery was measured on 27.08.2020 at day time. The observed values are given below.

Sl. No.	Location	Sound level	Remarks
1.	South of tankYT-30 (Near to Parking)	73	*
2.	Near T T gate (PDPP gate)		-
3.	South of Project warehouse .	70	-
4.	220 KV line crossing near rain water harvesting pond	56	*
5.	DHDS Tower No- 1	67	
6.	Rear side of DHDS fire station	69	***
7.	Near Chalikkara gate	73	<u> </u>
8.	Near TK-25	64	
9.	East of MS Block	67	
10.	South of DHDS Flare	77	•
11,	Near NHT-CCR-AAQMS (Near MSBP boundary)	72	
12.	West of tank YT-902(DHDS)	56	•
13.	Rear side of PIBU office(opp. IPTC)	53	•
14.	Bottling plant entrance from refinery(IPTC Road)	62	•
15.	North of LNG skid (GT-2 Road end)		-
16.	Near IREP gate	70	
17.	DCU	78	Flushing activity
18.	South of UB-12	65	-
19.	North of VGO labour amenity building	60	
20.	Behind IREP site office	66	*
21.	Below Coke Conveyor area near railway gate(PWC 4) ₁ offline	71	Conv. yor Online
22.	Below Coke Conveyor area near railway gate- RLS-1	72	Conveyor Online
23.	Below Coke Conveyor area near outlet A -RLS-2	75	Conveyor Online
24.	Drum Plant gate	63	

To

DGM (F&S

(r)

GM (HSE)

Smit Kumar Pal Manager (Safety)

	Health Surveillance Dat (01/04/2020 to 30/09/2020	
1	No of persons undergone comprehensive health check up	Total:861 Completed: We could do comprehensive health check-up because of covid pandemic
2	No of Audiometry Test Conducted (%)	Total: 0 We could not start statutory health check-up because of covid pandemic
3	No of people undergone comprehensive blood testing	Total:338 Completed:256
4	No of employees undergone statutory eye check-up (%)	We could not start statutory health check-up because of covid pandemic
5	No of employees who have done statutory urine phenol test.	No.of samples:15 samples tested
6	Number of Contract Employees covered under Statutory Health check-up Plan.	Total: nil We could not start statutory health check-up because of covid pandemic
7	Number of Health Talks Conducted(Cumulative)	11
8	Injury on Duty Employees	Total:16, Minor:5, FA:6
9	Injury on Duty Contract Workers	Total:16, Major:1,Minor:9,FA:6
10	Diabetic Clinic	We could not start diabetic clinic because of covid pandemic
11	Cardiac Clinic	We could not start diabetic clinic because of covid pandemic

CORPORATE RESPONSIBILITY FOR ENVIRONMENTAL PROTECTION (CREP)

PROGRESS REPORT ON ACTION POINTS

SI. No.	Task	Remarks/Status
1	All the refineries provide on line emission and effluent monitoring systems and give linkages to SPCB and CPCB server and detailed note shall be submitted by individual refineries indicating number of sensors, make and type etc.	Online connectivity of all five AAQMS given and intimated to CPCB/KSPCB.
2	The refineries shall submit action plan to achieve zero discharge (except once through cooling water in coastal region) within three months.	As part of integrated Refinery cum expansion project (IREP), an integrated ETP has been setup and the treated effluent is routed to RO plant for further processing and recycling water as DM water
3	The HSE department of refineries shall co-ordinate with marketing divisions for submission of note on evaporation during loading, leakage possibilities, steps taken for fire safety, management of oily sludge	HSE department of BPCL has initiated coordination and various measures to control evaporation during loading, leakage, fire safety, management of oily sludge etc. It includes vapour recovery system, bottom loading, fugitive emission survey, LDAR etc. Separate scheme is adopted for the management of oily sludge which includes centrifuging, oil recovery and bio-remediation.
4	The refineries who have not completed the task of providing low NOx burners shall complete within six month and submit completion note without further delay.	All the heaters under CEMP phase-II/IREP have been provided with low NOx burners.

CORPORATE RESPONSIBILITY FOR ENVIRONMENTAL PROTECTION (CREP)

Status as on 30th Sept. 2020

1.	Air Pollution Management	
	All the Refineries located in the	BPCL Kochi Refinery comes under severely polluted
a)	critically polluted areas, identified by CPCB, will submit an action plan for phase wise reduction of SO2 emission from the present level:	cluster. KR meets its total SO2 norm of 1518 kg/hr from the complex., present SO2 Emission is in the range of 400 to 600 Kg/hr It contributes to net reduction in SO2 emission by producing Euro- VI and MS and Diesel. Following steps are taken to reduce SO2 emissions from the refinery. • Modifications to plant fuel system to facilitate usage of low sulphur as liquid fuel. • Amine treatment of fuel gas • Sulphur Recovery Units with 99.9% efficiency as part of IREP. • Low Pressure Amine treatment of vacuum column vent. • Employing Biturox technology for Bitumen production, where off gas is incinerated and
		further treated.
b)	Future Refineries will have sulphur recovery with minimum 99% efficiency	SRUs have more than 99% efficiency. New SRU have 99.9% efficiency.
c)	Road map to improve the efficiency of SRU:	BPCL Kochi refinery is exploring the possibility of Oxygen enrichment technology for enhancing the efficiency of SRU and detailed engineering is in progress. Shut down is awaited for final hook up.
d)	With regard to NOx emission, the new Refineries / process units will install low NOx burners. For retrofitting of low NOx burners in existing units the same expert committee will suggest the strategies and action plan within six months:	The expert committee, during their visit to Kochi Refinery, had suggested replacing the burners in heaters with more than 10 million Kcal/hr duty with low NOx type burners. We have installed low NOx burners for ten heaters in the existing Refinery. Moreover, all the new process heaters and steam boilers (total six numbers) installed as part of capacity expansion cum modernization project, CEMP - Phase II and IREP have been provided with low NOx burners.
e)	The Expert Committee will also suggest an action plan, within 6 months, for control and monitoring of hydrocarbon loss and VOC emissions, leak detection and repair (LDAR) programme and vapour recovery systems (for loading and unloading operations within Refineries only):	Following provisions exists for VOC control a) Provision of mechanical seals on pumps for leak free operation. b) Use of submerged filling in product loading gantries. c) Closed blow down system for process plants. d) Floating roof tanks for volatile product storage. e) Conversion of floating roof tanks to double seal arrangement. f) Closed loop sampling system in process plants. g) Covered facility for oily effluent storage.

		h) VOC control system is in place in new ETPs for treatment of VOCs generated during in the effluent treatment area. i) Benzene continues monitoring with multiple probes that installed in various locations in the aromatic recovery unit on a daily basis. j) Five ambient air quality monitoring stations (AAQMS) are working online to monitor the ambient air quality on continuous basis. They provide eleven ambient air quality parameters, including hydrocarbons and the data is transferred online to CPCB/KSPCB. k) New Vapour recovery system is being implemented for Benzene & Toluene loading.
f)	The flare losses to be minimized and monitored regularly	Flare losses are monitored continuously through flare meters installed in the process units on a daily basis and are reviewed at the senior management level Further, the fuel gas flow to the pilot burner is maintained at the minimum level required to sustain the pilot flame. Various process schemes implemented to reduce flaring. Advanced process control (APC) system was implemented in hydrogen network for decreasing hydrogen flaring. Flare Gas recovery system is installed as part of IREP project and commissioned IN December 2017.
g)	Refineries will install continuous emission monitoring systems for SO2 and NOx in major stacks. Action plan for this will be submitted within six months	Kochi Refinery has provided continuous SO ₂ and NOx analyzing system for all the heater/boiler stacks and is connected to the CPCB.
h)	Refineries will also monitor total HC and Benzene in the premises (particularly in loading / unloading operations and ETP). The status and action plan will be submitted within six months	18 No's of HC detectors are installed in the truck loading/wagon loading area.2 No's of HC detectors and 2 No's of H2S detectors are installed in ETP-V area. Benzene continues monitoring with multiple probes that installed in various locations in the aromatic recovery unit on a daily basis. 5 No's of ambient air quality monitoring stations (AAQMS) are installed at the peripheries of the refinery to enable close monitoring of ambient air quality near the refinery. The ambient air quality information is also communicated to general public through an electronic display board.
2.	Waste Water Management:	
a)	Refineries will prepare an action plan for conservation of water resources and maximizing reuse / recycle of treated effluent within six months. The treated effluent discharge	The discharge of treated water from Kochi refinery is 0.22 m3 /tonne of crude processed. Steam condensate in the process plants is being recycled back to the boilers as feed water for the steam generation, there by resulting in reduction in the

quantity will be limited to 0.4 m3/tons (for 90% of time) except for the monsoon season:

fresh water consumption. Approximately 200-250 KL/h steam condensate is being recycled to steam boilers in the refinery.

The stripped water from the stripped water units is recycled as make up water to the desalting process in the crude unit.70-100 KL/h of liquid effluent generation is avoided by recycle. 0.33 Kilo Liter of water per Metric Ton of crude is recycled.

Treated effluent water from the wastewater treatment plants are recycled in RO plant

Oil spill response facilities at Coastal Refineries will be in position within two years:

Oil spill response (OSR) facility at Cochin port is already in place. Additionally, BPCL Kochi refinery has procured oil containment booms as part of SBM facilities commissioning to augment the capabilities of oil spill response related facilities. We have also conducted a mock drill to build confidence for the safe operation of SBM facilities with the help of port trust/coast guard personnel. It was decided to further strengthen the oil spill response facilities at Cochin port through purchase and installation of additional equipment and the major share of the investment was shouldered by BPCL Kochi refinery. Advance payment has been released to Cochin port trust for procurement of equipment.

3. Solid Waste Management: Refineries will explore new technologies for reduction in the generation of oily sludge. Strategy and action plan for liquidation of existing sludge will be submitted within six months

To reduce the sludge generation, Kochi Refinery follows the following best practices:

- ETP oily sludge is processed continuously in DCU. The oily sludge generated from tank cleaning is also processed in DCU.
- Any excess sludge generated have the provision for oil recovery through centrifuging.
- Switching of service of storage tanks between different crude oils (high wax and low wax) ensures minimum formation of sludge at the bottom of storage tanks.
- Use side entry mixers in the crude oil tank for minimization of sludge accumulation.
- 4. Refineries will carry out monitoring and survey to assess HC loss and concentration of VOC in Ambient Air / Waste Water Treatment Plant.
- a. BPCL Kochi refinery has implemented leak detection and repair (LDAR) program using portable hydrocarbon detector instrument. These programs are carried out on a quarterly basis on a large number of valves, flanges etc.in process units and offsite areas. The leaks identified are attended to by maintenance crew immediately and are monitored on regular basis.
- b. Secondary seals have been provided in 53 storage tanks storing volatile hydrocarbons to reduce fugitive hydrocarbon emissions.
- c. HC detectors are installed in sufficient numbers at the storage tank farm areas, process plants, product loading areas and LPG bottling plants in order to identify any hydrocarbon leaks immediately.
- d. Benzene monitoring is carried out using "dragger" chip technique in the aromatic recovery unit on daily basis.

- e. Five ambient air quality monitoring stations (AAQMS) are working online to monitor the ambient air quality on continuous basis. They provide eleven ambient air quality parameters, including hydrocarbons and the data is transferred online to CPCB/KSPCB. The ambient air quality information is also communicated to public through an electronic display board.
- f. Pressure relief valves for column and vessel are routed to flare to avoid fugitive emission during emergencies.

5. Refineries will assess the quantity of flare gas (install the measurement system if the same is not possible)

a. At BPCL Kochi refinery, flare losses are monitored continuously from different process units and are reviewed at the senior management level on a daily basis. Flare meters are installed in the process units for this purpose.

Further, the fuel gas flow to the pilot burner is maintained at the minimum level required to sustain the pilot flame.

Various process schemes implemented to reduce flaring

Advanced process control (APC) system was implemented in Hydrogen network for decreasing hydrogen flaring.

Flare gas recovery system is installed as part of IREP project and it can recover around 1.2 TPH flare gas to fuel gas system.

6. Assessment of Potential leakages from petroleum storage tanks

Inspection of petroleum storage tanks is being carried out by following API 653 standard, OISD standard 129 and other relevant standards. Maintenance work is carried out as per the standard procedure when tank is taken for the outage.

Total 60 No's of bore wells have been constructed at various locations inside the refinery in order to monitor the ground water for any hydrocarbon leakages from the refinery storage tanks and processing plants. The ground water samples from the bore wells are tested periodically for presence of hydrocarbons. In addition, 14 piezometer wells have been installed for monitoring of ground water quality.

7. Cleaner Technology options and information to be provided to CPCB

- 1. Clean technologies adopted to combat Air Pollution includes:
- 1. BPCL Kochi refinery has consistently met all deadlines for up gradation of auto fuel quality, set by the Government of India.KR is producing MS and HSD of BS VI norms.
- 2. Hydro desulphurization of feed stock to fluid catalytic cracking unit (FCCU)
- 3. Modifications in plant fuel system facilitate to usage of low sulfur Bombay high vacuum residue as liquid fuel, to lower sulfur dioxide emissions during processing of crude.
- 4. Amine treatment of fuel gas for removal hydrogen sulfide to produce sweet fuel gas.
- 5. Installation five trains of sulfur recovery unit with more than 99.9% recovery.
- 6. Low pressure amine treatment of vacuum column vent gas. This is a unique environmental protection technology developed by BPCL KR for removing toxic hydrogen sulfide gas produced during vacuum distillation process. This technology has been developed exclusively with in-house expertise. The uniqueness of the technology lies in the fact that the process for hydrogen sulfide removal is carried out under extremely low pressure drop conditions.
- 7. Desulphurization of low pressure gas from crude unit overhead and kerosene unit fractionator utilizing amine absorption.
- 8. Reduction furnace for conversion of ammonia stream to nitrogen in order to reduce NOx emissions.
- 9. State of the art Biturox Technology has been adopted for production of of Bitumen without any harmful emission. Unlike the traditional bitumen blowing technology, this technology helps for no odour or pollutants emissions. The off gases generated is subjected to incineration and caustic scrubbing in this technique. The waste water stream generated is also oxidized, thereby resulting in zero BOD for effluent. The fresh water consumption is also significantly reduced by the adoption of this technique.
- 10. An electrostatic precipitator has been installed downstream of CO boiler for minimizing particulate matter emission from FCCU regenerator flue gases. As part of PFCCU (part of IREP project) we have installed a tertiary cyclone separator and another ESP (Electrostatic precipitator) for particulate capture.

11. Closed loop sampling system in process plants.

12. Flare gas recovery system is installed as part of IREP project to recover around 1.2 TPH flare gas to fuel gas system

b) Clean technologies adopted to improve effluent water quality:

1. We have 4 effluent treatment plants catering to the different process units.

2. Installation of 5 numbers of sour water strippers and recycling of stripped water in process units.

3. Provision of two stage API oil separation system for effluent streams.

4. Spent caustic treatment utilizing H2O2 and air oxidation methods for treatment in an in an environment friendly way.

5. Closed drainage system for tank farm drains.

6. Two stage biological treatment system for effluent streams including tricking filter and activated sludge process, automated Chemostat Treatment and sequential batch reactor.(SBR)

7. Hydrogen Peroxide is utilized in our ETP's instead of FeCl3 to avoid chemical sludge formation.

8. Chemical de-contamination technique is being adopted at BPCL KR during turnarounds. The vessels, columns etc. are decontaminated using specially formulated chemical which is environment friendly, non-hazardous and fully biodegradable. The Hydrocarbons are recovered in the form of slop after deemulsification process.

c) Clean technologies implemented for optimal solid waste management

Mechanical oil recovery system for oil recovery from oily sludge. Post IREP ETP sludge is processed in DCU.

- 1. In-situ recovery of oil from crude tank bottom sludge.
- 2. BPCL Kochi refinery constructed two secured landfills for the safe disposal of hazardous solid wastes as per the standard norms laid down by CPCB. The first landfill pit has a capacity of 590m3 and is dedicated to the disposal of FCC catalyst fines and spent molecular sieves. The second land fill pit with a capacity of 390 m3 is dedicated for the disposal of sludge from effluent treatment plants.
- 3. Installation of bio gas plant of capacity 1 T/day to convert canteen food waste into gas for use in canteen. The plant is developed based on the NISARGRUNA technology developed by Bhabha Atomic Research Centre. (BARC)
- 4. We have entered into an agreement with KEIL for disposing solid hazardous wastes at their TSDF facility.
- 5. Wherever possible, spent catalyst containing recoverable metals are disposed /sold to authorized recyclers.
- 6. Paper waste recycling programme to dispose old paper to get new printable A4 paper.
- 7. A centralized solid waste segregation and management facility is under development. This Facility will act as a single point for collection, storage, treatment and evacuation of all types of wastes generated inside BPCL KR in an ecofriendly manner. This facility inaugurated on the World Environment Day, 5th June 2020.

GREEN COVER AT KOCHI REFINERY

BPCL, Kochi Refinery has always given highest preference towards care for environment and their protection. The company has already incorporated pollution control measures in their design itself and has also grown an extensive Green cover on its periphery and within for which the refinery goes by the name **BPCL Green Kochi Refinery**. Recognizing the company's commitment towards environment care and protection, it has been certified for ISO 14001, which was first in the state of Kerala.

Total green cover area at BPCL, Kochi Refinery is around 243 acres. The refinery contains an Eco-park and fruit bearing trees etc. which was developed and blends with the nature and inhabited with diverse trees, flowering plants, herbal trees. Three number of Butterfly parks were set up towards enhancement of Bio-diversity. As part of PDPP project green belt development, we planted more than 9000 saplings this year to make greenery in Petrochemical complex. A Mini Miyawaki forest was developed near coke dome. Further, the refinery has other dense vegetation in the form of plantation and natural wild growth which constitutes to the green cover. This diversified floral population within the refinery has drawn attention from seasonal migratory birds, contributing towards the faunal diversity enhancement.

In the line with their adherence to developing an ecologically enhanced and balanced facility, BPCL, Kochi Refinery also conducting surveys to enhance the green cover efficiency by exploring the possibilities for developing new green covers.

With the reference of Environmental clearance for the project of Expansion-cummodernization of refinery unit (CEMP-II), as committed in the EIA/EMP report, the company shall earmark Rs: 78.30 crores for environment protection measures and Rs: 51.00 crores for community development activities.

Environment Protection Measures:

The allocated amount of Rs: 78.3 crores spent for various Investments on Environment management associated with CEMP-II as per commitment in Environment Management Plan (EMP) were:

- Sour water stripper unit
- Waste water treatment system
- Fire protection system
- Tall Stacks for wide dispersion of pollutants
- Stack gas monitoring (online facilities)
- Land acquisition for safety of the surrounding environment
- Green belt development

Community Development Activates:

The Various Community Development Activities associated with CEMP II were carried out under the following categories.

- **♦** Education
- **♦** Water Management
- **♦** Health Care
- **♦** Community Development
- **♦** Support for Local Programs

Some of the major activities carried out are as below:

- a) Rejuvenation of neighboring Thanneerchal Lake in Tripunithura.
- b) Support for Gas Fired Crematoriums in Grama Panchayats.
- c) House for poor (Urban & Rural): Vadavucode Puthencruz & Thiruvaniyoor Grama Panchayats and Kochi Corporation.
- d) Construction/Renovation of Primary Health Centers.
- e) Construction/renovation of Anganwadis.
- f) Construction/renovation of class rooms in Govt. Schools.
- g) Support for Kudumbasree Units Building, vehicle for waste collection.
- h) Promotion of science education in Govt. Schools.
- i) Installation of Traffic Signal Systems at various junctions.
- j) Development/renovation/repair of rural roads.
- k) Up-keeping of public utilities & heritage monuments.
- 1) Support for Special Schools.
- m) Setting up of Public toilets.
- n) Rural lighting projects